如果没有年龄区间
画图发现ans=\(\sum_{i=1}^n dis_i + n * dis_u - 2 * \sum_{i=1}^{n} dis_{lca(i, u)}\)对\(\sum_{i=1}^{n} dis_{lca(i, u)}\)用树链剖分,对于每个点,都向上走到根,记录每条路经过次数,询问时从u向上跳,每次加边权*覆盖次数即可
现在有年龄区间,加个前缀和,计算点权在[L,R]内的点到点u的距离,用主席树
然而主席树怎么pushdown,加上
# include# define IL inline# define RG register# define Fill(a, b) memset(a, b, sizeof(a))using namespace std;typedef long long ll;const int _(3e6 + 10), __(1e7 + 10);IL ll Read(){ RG char c = getchar(); RG ll x = 0, z = 1; for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1; for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48); return x * z;}int n, m, Q, A, id[_], o[_];int fst[_], nxt[_], to[_], w[_], size[_], fa[_], dfn[_], top[_], cnt, son[_], pos[_];int rt[__], ls[__], rs[__], cov[__];ll dis[_], sdis[_], sum[__];IL bool Cmp(RG int x, RG int y){ return o[x] < o[y]; }IL void Add(RG int u, RG int v, RG int f){ w[cnt] = f; to[cnt] = v; nxt[cnt] = fst[u]; fst[u] = cnt++; }IL void Dfs1(RG int u){ size[u] = 1; for(RG int e = fst[u]; e != -1; e = nxt[e]){ if(size[to[e]]) continue; dis[to[e]] = dis[u] + w[e]; fa[to[e]] = u; Dfs1(to[e]); size[u] += size[to[e]]; if(size[to[e]] > size[son[u]]) son[u] = to[e]; }}IL void Dfs2(RG int u, RG int Top){ dfn[u] = ++cnt; top[u] = Top; pos[cnt] = u; if(son[u]) Dfs2(son[u], Top); for(RG int e = fst[u]; e != -1; e = nxt[e]) if(!dfn[to[e]]) Dfs2(to[e], to[e]);}IL void Build(RG int &x, RG int l, RG int r){ x = ++cnt; if(l == r) return; RG int mid = (l + r) >> 1; Build(ls[x], l, mid); Build(rs[x], mid + 1, r);}IL void Modify(RG int &x, RG int l, RG int r, RG int L, RG int R){ sum[++cnt] = sum[x]; ls[cnt] = ls[x]; rs[cnt] = rs[x]; cov[cnt] = cov[x]; x = cnt; sum[x] += dis[pos[R]] - dis[fa[pos[L]]]; if(L <= l && R >= r){ cov[x]++; return; } RG int mid = (l + r) >> 1; if(R <= mid) Modify(ls[x], l, mid, L, R); else if(L > mid) Modify(rs[x], mid + 1, r, L, R); else Modify(ls[x], l, mid, L, mid), Modify(rs[x], mid + 1, r, mid + 1, R);}IL ll Query(RG int x, RG int ad, RG int l, RG int r, RG int L, RG int R){ if(L <= l && R >= r) return sum[x] + 1LL * ad * (dis[pos[R]] - dis[fa[pos[L]]]); RG int mid = (l + r) >> 1; if(R <= mid) return Query(ls[x], ad + cov[x], l, mid, L, R); if(L > mid) return Query(rs[x], ad + cov[x], mid + 1, r, L, R); return Query(ls[x], ad + cov[x], l, mid, L, mid) + Query(rs[x], ad + cov[x], mid + 1, r, mid + 1, R);}IL ll Calc(RG int u, RG int i){ RG ll ans = 0; while(top[u] ^ 1) ans += Query(rt[i], 0, 1, n, dfn[top[u]], dfn[u]), u = fa[top[u]]; ans += Query(rt[i], 0, 1, n, 1, dfn[u]); return ans;}int main(RG int argc, RG char* argv[]){ n = Read(); Q = Read(); A = Read(); for(RG int i = 1; i <= n; ++i) o[i] = Read(), id[i] = i, fst[i] = -1; sort(id + 1, id + n + 1, Cmp); sort(o + 1, o + n + 1); for(RG int i = 1, aa, b, c; i < n; ++i) aa = Read(), b = Read(), c = Read(), Add(aa, b, c), Add(b, aa, c); Dfs1(1); cnt = 0; Dfs2(1, 1); cnt = 0; Build(rt[0], 1, n); for(RG int i = 1; i <= n; ++i){ RG int u = id[i]; rt[i] = rt[i - 1]; sdis[i] = sdis[i - 1] + dis[u]; while(top[u] ^ 1) Modify(rt[i], 1, n, dfn[top[u]], dfn[u]), u = fa[top[u]]; Modify(rt[i], 1, n, 1, dfn[u]); } for(RG ll L, R, u, a, b, ans = 0; Q; --Q){ u = Read(); a = Read(); b = Read(); L = min((a + ans) % A, (b + ans) % A); R = max((a + ans) % A, (b + ans) % A); L = lower_bound(o + 1, o + n + 1, L) - o; R = lower_bound(o + 1, o + n + 1, R + 1) - o - 1; ans = 1LL * (R - L + 1) * dis[u] + sdis[R] - sdis[L - 1] - 2LL * (Calc(u, R) - Calc(u, L - 1)); printf("%lld\n", ans); } return 0;}